3 research outputs found

    Inferring processes of community assembly from macroscopic patterns: the case for inclusive and mechanistic approaches

    Full text link
    Statistical techniques exist for inferring community assembly processes from community patterns. Habitat filtering, competition, and biogeographical effects have, for example, been inferred from signals in phenotypic and phylogenetic data. The usefulness of current inference techniques is, however, debated as the causal link between process and pattern is often lacking and processes known to be important are ignored. Here, we revisit current knowledge on community assembly across scales and, in line with several reviews that have outlined the features and challenges associated with current inference techniques, we identify a discrepancy between features of real communities and current inference techniques. We argue, that mechanistic eco-evolutionary models in combination with novel model fitting and model evaluation techniques can provide avenues for more accurate, reliable and inclusive inference. To exemplify, we implement a trait-based and spatially explicit dynamic eco-evolutionary model and discuss steps of model modification, fitting, and evaluation as an iterative approach enabling inference from diverse data sources. This suggested approach can be computationally intensive, and model fitting and parameter estimation can be challenging. We discuss optimization of model implementation, data requirements and availability, and Approximate Bayesian Computation (ABC) as potential solutions to challenges that may arise in our quest for better inference techniques

    Synergy and Group Size in Microbial Cooperation

    Get PDF
    Microbes produce many molecules that are important for their growth and development, and the consumption of these secretions by nonproducers has recently become an important paradigm in microbial social evolution. Though the production of these public goods molecules has been studied intensely, little is known of how the benefits accrued and costs incurred depend on the quantity of public good molecules produced. We focus here on the relationship between the shape of the benefit curve and cellular density with a model assuming three types of benefit functions: diminishing, accelerating, and sigmoidal (accelerating then diminishing). We classify the latter two as being synergistic and argue that sigmoidal curves are common in microbial systems. Synergistic benefit curves interact with group sizes to give very different expected evolutionary dynamics. In particular, we show that whether or not and to what extent microbes evolve to produce public goods depends strongly on group size. We show that synergy can create an “evolutionary trap” which can stymie the establishment and maintenance of cooperation. By allowing density dependent regulation of production (quorum sensing), we show how this trap may be avoided. We discuss the implications of our results for experimental design

    Modeling carbon allocation in trees: a search for principles

    Get PDF
    We review approaches to predicting carbon and nitrogen allocation in forest models in terms of their underlying assumptions and their resulting strengths and limitations. Empirical and allometric methods are easily developed and computationally efficient, but lack the power of evolution-based approaches to explain and predict multifaceted effects of environmental variability and climate change. In evolution-based methods, allocation is usually determined by maximization of a fitness proxy, either in a fixed environment, which we call optimal response (OR) models, or including the feedback of an individual's strategy on its environment (game-theoretical optimization, GTO). Optimal response models can predict allocation in single trees and stands when there is significant competition only for one resource. Game-theoretical optimization can be used to account for additional dimensions of competition, e.g., when strong root competition boosts root allocation at the expense of wood production. However, we demonstrate that an OR model predicts similar allocation to a GTO model under the root-competitive conditions reported in free-air carbon dioxide enrichment (FACE) experiments. The most evolutionarily realistic approach is adaptive dynamics (AD) where the allocation strategy arises from eco-evolutionary dynamics of populations instead of a fitness proxy. We also discuss emerging entropy-based approaches that offer an alternative thermodynamic perspective on allocation, in which fitness proxies are replaced by entropy or entropy production. To help develop allocation models further, the value of wide-ranging datasets, such as FLUXNET, could be greatly enhanced by ancillary measurements of driving variables, such as water and soil nitrogen availability
    corecore